Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38398690

RESUMEN

Before the invasion of the fall armyworm (FAW) Spodoptera frugiperda into Africa, smallholder farmers had been using indigenous practices such as applying fish soup to plants to manage stemborer pests. Although farmers have since begun adapting this practice against FAW, no attempt has been made to scientifically evaluate this practice. Therefore, we assessed the efficacy of applying fish soup to maize plants that were artificially infested with FAW under semi-field conditions. Our results showed that foliar damage is inversely correlated with the concentration of a fish soup and sugar solution, with the highest (100%) concentration resulting in the lowest foliar damage and the highest plant recovery. The FAW foliar damage results for maize plants treated with 100%, 50%, 10% fish soup and sugar, and distilled water were 46.3 ± 5.6, 51.1 ± 5.0, 71.6 ± 5.2, and 99.4 ± 0.4%, respectively, whereas plant recovery results from the same treatments were 35.2 ± 3.7, 31.1 ± 5.4, 20.0 ± 4.6, and 0.0 ± 0.0%, respectively. A concentration of fish soup and sugar solution of at least 25.9% was required to achieve the lowest foliar damage of 17.8% and peak plant recovery of 73.6%. Fish soup and sugar solutions attracted a wide range of insects, including potential natural enemies (predators and parasitoids) of FAW, in a dose-dependent manner. Maize plants treated with fish soup and sugar showed higher chlorophyll content and better growth than the control did. Proximate and chemical analysis showed that fish soup contains essential plant growth nutrients (e.g., nitrogen, phosphorus, and calcium). Through GC-MS analyses, we identified 76 volatile organic compounds in fish soup, of which 16 have been reported as insect attractants, highlighting their potential ecological significance. Therefore, the indigenous pest management practices for FAW, such as the use of fish soup, deserve particular attention. These practices could contribute to food security and improve the livelihoods of vulnerable communities. Further field validation studies, economic analyses, product development, and optimisation are therefore required to optimise the use of fish soup based on fish waste.

2.
J Econ Entomol ; 116(5): 1529-1539, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37597612

RESUMEN

The negative effects of pest infestation on agricultural production cannot be underestimated. There have been several efforts to control these pests, chiefly through the use of synthetic pesticides. However, the continuous use of the chemicals causes pest resistance and resurgence and presents high human and environmental risks. This study examines the economic, health, and environmental impacts of Tuta absoluta (Meyrick 1917), an economically important pest in tomato production, among smallholder farmers in selected counties in Kenya and Uganda. Economic Impact Quotient and gross margin analysis were used on data obtained from a random sample of 316 and 345 tomato growers in Kenya and Uganda, respectively. The results show a significant impact of T. absoluta on tomato production in both countries. On average, the tomato growers earned a gross income of $38,123 and $11,627 in Kenya and Uganda, respectively, with synthetic chemicals for the management of T. absoluta contributing 66-78% of the cost of production. The opportunity cost lost due to forgoing pesticide for management of the pest, and instead replacing it with an integrated pest management package was valued between $8 and $646 in Kenya and $895 in Uganda, respectively, using net present value through the most pessimistic scenario, while benefit-cost ratio was $1 and $5 in Kenya and Uganda, respectively.

3.
Biology (Basel) ; 12(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36829551

RESUMEN

Parasitoids are promising biocontrol agents of the devastating fruit fly, Bactrocera dorsalis. However, parasitoid performance is a function of several factors, including host-associated symbiotic bacteria. Providencia alcalifaciens, Citrobacter freundii, and Lactococcus lactis are among the symbiotic bacteria commonly associated with B. dorsalis, and they influence the eco-physiological functioning of this pest. However, whether these bacteria influence the interaction between this pest and its parasitoids is unknown. This study sought to elucidate the nature of the interaction of the parasitoids, Fopius arisanus, Diachasmimorpha longicaudata, and Psyttlia cosyrae with B. dorsalis as mediated by symbiotic bacteria. Three types of fly lines were used: axenic, symbiotic, and bacteria-mono-associated (Lactococcus lactis, Providencia alcalifaciens, and Citrobacter freundii). The suitable stages of each fly line were exposed to the respective parasitoid species and reared until the emergence of adult flies/parasitoids. Thereafter, data on the emergence and parasitoid fitness traits were recorded. No wasps emerged from the fly lines exposed to P. cosyrae. The highest emergence of F. arisanus and D. longicaudata was recorded in the L. lactis fly lines. The parasitoid progeny from the L. lactis and P. alcalifaciens fly lines had the longest developmental time and the largest body size. Conversely, parasitoid fecundity was significantly lower in the L. lactis lines, whereas the P. alcalifaciens lines significantly improved fecundity. These results elucidate some effects of bacterial symbionts on host-parasitoid interactions and their potential in enhancing parasitoid-oriented management strategies against B. dorsalis.

4.
Pest Manag Sci ; 79(4): 1585-1592, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36533692

RESUMEN

BACKGROUND: Tephritid fruit flies are a major constraint to the global production of horticultural crops. In Africa, an array of native and alien invasive fruit fly species represents a key challenge to the horticultural industry. In an effort to develop a safer management tool for these pests, we previously identified glutathione (GSH) and glutamic acid (GA), as the host marking pheromones (HMPs) of Ceratitis cosyra and Ceratitis rosa, respectively. Here, we report on the effectiveness of these compounds (GSH and GA) in reducing natural fruit fly population infestations in mango orchards. Mango trees at two different agroecological zones in Kenya were sprayed with HMPs, and the fruits sampled periodically and assessed for fruit fly emergence. Fruit fly emergence data were compared to two controls, the positive control using spot spraying of food bait (SS), and the negative control using water (W). RESULTS: The two HMPs and SS substantially decreased fruit fly emergence from the sampled mangoes. GSH and GA treated mangoes showed reduced C. cosyra and C. rosa infestation by ~70-75% relative to control (W), and with variation noted in the pheromone applied and the recovered fruit fly species. The adult emergence in pheromone-treated plants compared favorably with the positive control SS. However, the HMPs had little impact on reducing Bactrocera dorsalis infestation of mangoes. CONCLUSION: The decrease in fruit fly emergence in sampled mango fruits from HMP treated trees corroborate previous laboratory results and support the prospect of using HMPs in the management of African fruit fly species. © 2022 Society of Chemical Industry.


Asunto(s)
Mangifera , Tephritidae , Animales , Ácido Glutámico , Kenia , Feromonas , Drosophila , Glutatión
5.
Biology (Basel) ; 11(9)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36138804

RESUMEN

The Integrated Pest Management (IPM) approach have been widely promoted and used for the management of native and invasive pests, while the use of various components of the IPM can have a synergetic, additive, or antagonistic effect on each other; this study evaluated the susceptibility of Dolichogenidea gelechiidivoris (Marsh) (Hymenoptera: Braconidae), to the Metarhizium anisopliae (Metschnikoff) ICIPE 20 through direct and indirect infection approaches. The effect of fungus on parasitoid longevity, survival of parasitized-larvae, preference of the parasitoid to fungal treated and untreated larvae, and percent parasitism of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under different infection scenarios were assessed. The direct application of dry conidia to the parasitoid prior to exposure to the host, reduced D. gelechiidivoris longevity, though the infected female wasps still yielded high parasitism (over 70%). Infecting the parasitized larvae at different ages led to a respective reduction of parasitoid emergence by 35% and 23% for infection at 1 and 5 days post-parasitisation. Exposure of healthy-D. gelechiidivoris adults to a plant-sprayed with fungus did not affect their longevity, and no discriminatory host selection was observed. The highest mortality (~80%) of T. absoluta was achieved when D. gelechiidivoris and M. anisopliae ICIPE 20 were used in combination, indicating an additive impact on the target pest; however, field validation can shed more light on this outcome.

6.
Front Physiol ; 13: 945370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091407

RESUMEN

The oriental fruit fly, Bactrocera dorsalis (Hendel), and marula fruit fly, Ceratitis cosyra (Walker), are major fruit-infesting tephritids across sub-Saharan Africa. Biological control of these pests using parasitic wasps has been widely adopted but with varying levels of success. Most studies investigating host-parasitoid models have focused on functional and evolutionary aspects leaving a knowledge gap about the physiological mechanisms underpinning the efficacy of parasitoids as biocontrol agents of tephritids. To better understand these physiological mechanisms, we investigated changes in the cellular immune responses of C. cosyra and B. dorsalis when exposed to the parasitic wasps, Diachasmimorpha longicaudata (Ashmaed) and Psyttalia cosyrae (Wilkinson). We found that B. dorsalis was more resistant to parasitisation, had a higher hemocyte count, and encapsulated more parasitoid eggs compared to C. cosyra, achieving up to 100% encapsulation when exposed to P. cosyrae. Exposing B. dorsalis to either parasitoid species induced the formation of a rare cell type, the giant multinucleated hemocyte, which was not observed in C. cosyra. Furthermore, compared to P. cosyrae-parasitized larvae, those of both host species parasitized by D. longicaudata had lower encapsulation rates, hemocyte counts and spreading abilities and yielded a higher number of parasitoid progeny with the highest parasitoid emergence (72.13%) recorded in C. cosyra. These results demonstrate that cellular immune responses are central to host-parasitoid interaction in tephritid fruit flies and further suggest that D. longicaudata presents greater potential as a biocontrol agent of B. dorsalis and C. cosyra in horticultural cropping systems.

7.
Insects ; 13(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35735832

RESUMEN

Associations between the South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), and its native parasitoids need to be updated to increase the implementation of pest control strategies. In this study, T. absoluta-infested tomato plants were collected from three regions in Kenya. The emerged parasitoids were identified, and their abundance was correlated with agroecological parameters, viz. cropping systems, and the abundance of the predator Nesidiocoris tenuis Reuter (Hemiptera: Miridae). The study further conducted a habitat suitability prediction for the identified parasitoids. Two parasitoid species, Bracon nigricans (Szépligeti) (Hymenoptera: Braconidae) and Stenomesius sp. near japonicus (Ashmead) (Hymenoptera: Eulophidae) emerged from T. absoluta immature stages, with parasitism rates ranging from 0 to 21% and 0 to 17% respectively. Insecticide application and open field cropping negatively influenced the parasitism by S. sp. nr japonicus. Low occurrence of N. tenuis positively affected B. nigricans parasitism. The predicted occurrence of parasitoid species indicated vast suitable areas for B. nigricans in sub-Saharan Africa, Australia, and South America. Low suitability was observed for S. sp. nr japonicus in Africa. Therefore, native parasitoids, especially B. nigricans could be considered for implementation as a biocontrol agent in the Integrated Pest Management program of T. absoluta.

8.
Biology (Basel) ; 11(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35205048

RESUMEN

The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is an invasive pest that devastates the production of tomatoes and other solanaceous vegetables. Since its trans-Atlantic invasion in 2006, T. absoluta has spread and established in many countries across the Afro-Eurasian Supercontinent, causing huge yield losses. This study aimed to determine the relationship between temperature and the life history traits of T. absoluta and provide the thermal thresholds for development using life cycle modelling. Linear and non-linear models were fitted to life table data collected at five constant temperatures of 15, 20, 25, 30, and 35 °C, with Relative Humidity 70 ± 5% and photoperiod 12L:12D. Another experiment was conducted at fluctuating temperatures to validate the laboratory results. Tuta absoluta completed its life cycle at temperatures between 15 and 35 °C. The development time ranged between 4.0-11 days, 6.3-16.0 days, and 5.4-20.7 days for egg, larva, and pupa, respectively. The lowest thermal threshold was estimated at 8.10, 7.83, and 11.62 °C, respectively for egg, larva, and pupa. While the optimum temperature for T. absoluta immature stages survival and female fecundity were predicted at a temperature range of 21-23 °C. The intrinsic rate of increase (rm), gross reproductive (GRR), and net reproductive (Ro) rates were significantly higher at temperatures between 20-25 °C. The model validation outcome showed similarities between observed and simulated values for development time, mortality rate, and life table parameters, attesting to the quality of the phenology model. Our results will help in predicting the effect of climate warming on the distribution and population dynamics of T. absoluta. Furthermore, the results could be used to develop management strategies adapted to different agroecological zones.

9.
PLoS One ; 16(7): e0253122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270565

RESUMEN

The invasion and wide spread of Spodoptera frugiperda represent real impediments to food security and the livelihood of the millions of maize and sorghum farming communities in the sub-Saharan and Sahel regions of Africa. Current management efforts for the pest are focused on the use of synthetic pesticides, which are often economically unviable and are extremely hazardous to the environment. The use of biological control offers a more economically and environmentally safer alternative. In this study, the performance of the recently described parasitoid, Cotesia icipe, against the pest was elucidated. We assessed the host stage acceptability by and suitability for C. icipe, as well as its ovigenic status. Furthermore, the habitat suitability for the parasitoid in the present and future climatic conditions was established using Maximum Entropy (MaxEnt) algorithm and the Genetic Algorithm for Rule-set Prediction (GARP). Cotesia icipe differentially accepted the immature stages of the pest. The female acceptance of 1st and 2nd instar larvae for oviposition was significantly higher with more than 60% parasitism. No oviposition on the egg, 5th and 6th larval instars, and pupal stages was observed. Percentage of cocoons formed, and the number of emerged wasps also varied among the larval stages. At initial parasitism, parasitoid progenies, time to cocoon formation and overall developmental time were significantly affected by the larval stage. Egg-load varied significantly with wasp age, with six-day-old wasps having the highest number of mature eggs. Ovigeny index of C. icipe was 0.53. Based on the models, there is collinearity in the ecological niche of the parasitoid and the pest under current and future climate scenarios. Eastern, Central and parts of coastal areas of western Africa are highly suitable for the establishment of the parasitoid. The geographic distribution of the parasitoid would remain similar under future climatic conditions. In light of the findings of this study, we discuss the prospects for augmentative and classical biological control of S. frugiperda with C. icipe in Africa.


Asunto(s)
Spodoptera/parasitología , Avispas , Animales , Ecosistema , Etiopía , Femenino , Interacciones Huésped-Parásitos , Especies Introducidas , Kenia , Larva/parasitología , Masculino , Oviposición , Control Biológico de Vectores/métodos , Spodoptera/crecimiento & desarrollo
10.
Nat Prod Res ; 35(24): 5681-5691, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32985266

RESUMEN

Methanolic extracts of liana of Caesalpinia welwitschiana and leaves of C. bonduc were found to possess moderate antifeedant and ovicidal activities against Tuta absoluta. Bioassay-guided isolation of constituents from the most active fraction of C. welwitschiana led to the identification of four known compounds [isobonducellin 1a and bonducellin 1 b, intricatinol 2, (-)-epigallocatechin-3-O-gallate 4] and one new constituent [welwitschianic acid 3]. The most active fraction of C. bonduc afforded two known constituents neocaesalpin L 5 and neocaesalpin A 6. The isolated structures were elucidated on the basis of their MS, UV, IR and 1 & 2 D NMR spectra and by comparison with literature data. Compounds 2, 4-6 were showed antifeedant and ovicidal properties against T. absoluta, some comparable to that of azadirachtin at 50, 100 and 200 ng/µl. Overall, the present study, conclude that the two species of the plant could be a promising source of eco-friendly botanical constituents.


Asunto(s)
Caesalpinia , Diterpenos , Lepidópteros , Animales , Espectroscopía de Resonancia Magnética , Estructura Molecular
11.
Insects ; 11(10)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023254

RESUMEN

The braconid wasp, Diachasmimorpha longicaudata (Ashmead), was introduced in Kenya from Hawaii for classical biological control of the invasive tephritid, Bactrocera dorsalis Hendel. Following reports that D. longicaudata had formed new associations with Ceratitis cosyra, laboratory experiments were conducted to assess the interaction between the introduced and the native parasitoid of C. cosyra; Psyttalia cosyrae (Wilkinson) under three scenarios: B. dorsalis only, C. cosyra only and mixed populations of the two species. Parasitoids were introduced to the host as sole, sequential and simultaneous releases. Host searching and probing events were five times higher for D. longicaudata than P. cosyrae with both hosts. Total parasitism was highest (78%) when D. longicaudata was released alone on C. cosyra, compared to 20% for P. cosyrae released on the same host. Releases of P. cosyrae on B. dorsalis resulted in 0% parasitism, compared to 64% parasitism by D. longicaudata. Specific parasitism for P. cosyrae was three times higher when P. cosyrae was released first in sequential releases on C. cosyra compared to when it was released after D. longicaudata. These findings suggest that the two parasitoids can both suppress C. cosyra but B. dorsalis acts as a reproductive sink for P. cosyrae. Our findings should form the basis of field investigations where options are much wider for both parasitoids.

12.
Environ Sci Pollut Res Int ; 27(30): 37963-37976, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32613512

RESUMEN

Tuta absoluta Meyrick originates in South America and is now one of the most important insect pests of Solanaceae in different parts of the world, including Africa. Its control has relied primarily on chemical insecticides, which are associated with negative ecological effects. In the present study, essential oils of Ocimum gratissimum and O. kilimandscharicum were tested for repellence and fumigant toxicity on the adult stages under laboratory conditions. The oil of O. gratissimum was more repellent, but its toxicity was comparable with that of O. kilimandscharicum. The major constituents of O. gratissimum were methyl eugenol (39.5%) and eugenol (29.7%). Those of O. kilimandscharicum were camphor (47.1%) and 1.8-cineole (19.3%). Eugenol (LC50 of 0.24 µl/ml, 83.3%, RI50 = 0.15) and camphor (LC50 of 0.23 µl/ml, 89.5%, RI50 = 0.13) were more toxic (at 1 µl/ml for 24 h) and repellent than the other constituents. The results show potential of the essential oils for use in integrated management of the tomato pest.


Asunto(s)
Lepidópteros , Ocimum , Aceites Volátiles , África , Animales , América del Sur
13.
J Econ Entomol ; 113(2): 660-668, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31913470

RESUMEN

The polyphagous moth, Thaumatotibia leucotreta (Meyrick) is among the major constraints to the horticultural industry in East Africa. In a search of sustainable control methods, the pathogenicity of the dry conidia of 17 Metarhizium anisopliae (Metschn.) and five Beauveria bassiana (Bals.) (Vuill.) isolates were tested against T. leucotreta moths. The conidial uptake by a single moth, horizontal transmission, and effect of fungal inoculant on egg-laying and hatchability for the pest were also assessed. The findings from this study showed that tested fungi were virulent to the moths, with 12 isolates causing mortality that ranged between 58.8 and 94.2% for M. anisopliae and three isolates between 57.6 and 84.6% for B. bassiana. The entomopathogenic fungi isolates, M. anisopliae ICIPE 69 and B. bassiana ICIPE 279 were highly virulent with low lethal times to 50% mortality (LT50) of 3.81 and 5.13 d, respectively. The isolate, ICIPE 69 conidia acquisition by a single moth were approximately 4.58 × 106 and 3.51 × 106 for males and females, respectively. The lowest survival rate (3.33 %) caused by inoculum transmission was recorded in donor males compared to 16.67% in recipient males. Fecundity was reduced by 33.6 and 25.9% for donor and recipient females, respectively. The pest can acquire conidia from the treated substrate and transmission is then possible between adults. ICIPE 69 is virulent and reduces the reproduction potential of the pest after transmission. The findings are discussed in the prospects of microbial control of this pest using an autodissemination technique.


Asunto(s)
Beauveria , Metarhizium , Mariposas Nocturnas , Animales , Femenino , Masculino , Control Biológico de Vectores , Virulencia
14.
J Econ Entomol ; 112(6): 2797-2807, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31428782

RESUMEN

Following the arrival of Tuta absoluta Meyrick in the eastern African subregion in 2012, several studies have shown numerous ecological aspects of its invasion. We investigated the impact of T. absoluta on people's livelihoods across four counties of Kenya. Here, 200 farmers in the country were interviewed in person using semistructured questionnaires. In addition to livelihood surveys, T. absoluta distribution was mapped between 2016 and 2018 to determine its current distribution across four countries (Kenya, Sudan, Tanzania, and Uganda) in the subregion. Albeit a recent invader, T. absoluta is abundant and distributed throughout the subregion and is viewed as the worst invasive alien species of agriculturally sustainable livelihoods by tomato farmers. The arrival of T. absoluta in the subregion has resulted in livelihood losses and increased both the cost of tomato production and frequency of pesticide application. We recommend the implementation of biological control along, with other control measures in an integrated approach, against T. absoluta in the subregion, where its impact on sustainable livelihoods is serious and long-term control strategies are required to curb its detrimental effects.


Asunto(s)
Lepidópteros , Mariposas Nocturnas , Solanum lycopersicum , Animales , Kenia , Larva , Factores Socioeconómicos , América del Sur , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...